Deliverable D2.3 Report on Ethical and Social Issues

This Deliverable identifies and examines various societal and ethical issues that are relevant to the production of, access to, linking of and re-use of big data in the transport sector.
Chapter 2, on the one hand, discusses the concept of big data, its particular characteristics, and its possible use in the transport sector. On the other hand, it delves into the interaction between ethical and social issues and the ways to integrate these into the existing policy framework. In Chapter 3, the authors examine the various identified ethical and social issues and discuss the challenges and opportunities that may arise in this respect, coming up with notably the following findings:

  • Trust: Although the research in trust has already become relatively mature, the huge amount and diversity of data and data sources provides lots of new opportunities but at the same time poses many challenges for online trust, notably in the context of transportation.
  • Surveillance: Considering the role of government agencies and their increasing requests of information to the private sector for public security purposes, it appears necessary to adopt specific rules to regulate the information flow, to define the rights over data and to ensure adequate enforcement.
  • Privacy (including transparency, consent and control): The advent of the GDPR has had a considerable impact in the domains of privacy, transparency, consent and control. This strengthened legal framework is likely to respond to several ethical issues and thus improve end users' trust in the use of personal data in a big data context.
  • Free will: Although big data-driven profiling practices can limit free will, a huge part of what we know about the world comes from data analysis. Careful and appropriate information analysis can open up plenty of chances and might reduce the limitations and problems for free will.
  • Personal data ownership: This Deliverable concludes that a claim of ownership by a data subject in its personal data would be hard to sustain. Nevertheless, in a big data context, different third-party entities may try to claim ownership in (parts of) a dataset, which may hinder the use of big data, including in the transport sector.
  • Discrimination: Using big data analytics to improve business processes or provide personalised services may lead to discrimination of certain groups of people. Also, the "Digital Divide", i.e. the social differences in access to technology and education or skills to use it, may lead to data-driven discrimination.
  • Environmental: There are trade-off or rebound effects from the use of big data in transport, which limits the effect of big data exploitation or creates unintended consequences. Such trade-off or rebound effects will be further assessed in Deliverable D2.4.

Finally, the last Chapter serves as a conclusion and introduces possible ways of moving forward to encourage the production of, access to, linking of and re-use of big data in the transport sector, with a particular focus on the EU. Particularly, Chapter 4 examines whether regulatory intervention or ethics-by-design are appropriate solutions to the challenges caused by ethical and social issues in relation to big data. The conclusion is that regulatory intervention is not desirable. Instead, the authors advocate an approach whereby ethics-by-design is recognised as an EU legal principle, similarly to privacy-by-design, and is supplemented by self-regulation and soft law. Section 4.3.1 aims to provide inspiration for ethics-by-design core implementation principles to be developed further in working groups at EU level.